

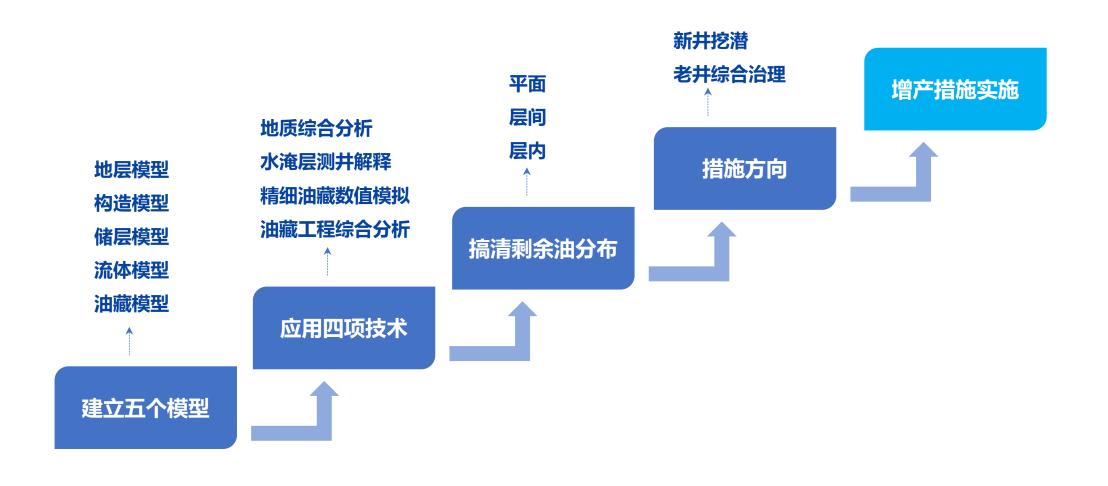
油气增产解决方案及实施一体化服务

KERUI PETROLEUM TECHNOLOGY

让能源的获取更加高效 www.keruioil.com

EXCONTENTS

01 油藏描述


02 油气增产技术方案编制

03 油气增产技术及服务应用

让能源的获取更加高效 www.keruioil.com

老油田经过多年开发后,呈现高度分散、局部富集的特点,为了达到油气增产的目的,需通过建立地层、构造等五个模型,并通过地质综合分析、油藏工程综合分析等四项技术手段,搞清剩余油的分布特征,以达到剩余油挖潜的目的。

一 油藏描述技术

油藏描述技术:不同成因机制和地质背景形成的油藏类型,在储层表征与开发实践中呈现出显著的差异性特征,需建立针对性的研究和技术方法。

整装油藏

不同油藏型描述

储层内部结构表征 高耗水层带识别 韵律层细分 断块油藏

精细断棱及断面刻画 低序级断层描述及组合 复杂断裂系统地质建模 特殊岩性油藏

储集岩空间分布研究 裂缝空间分布及属性特征

技术 重点

厚油层韵律段细分技术 层内夹层精细预测技术 低级序断层精细描述 技术

储集空间与裂缝描述 技术

www.keruioil.com

ECONTENTS

01 油藏描述

02 油气增产技术方案编制

03 油气增产技术及服务应用

让能源的获取更加高效

二油气增产技术方案编制

科瑞非常规油气研究院拥有高性能实验设备和国际先进软件系统,以**地质综合研究**和油**藏工程研究**为基础,针对**目标油藏编制技术、经济可行的油气增产方案。**

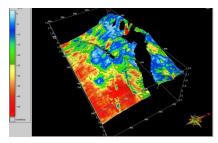
■ 研究能力

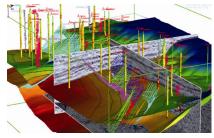
> 地质综合研究

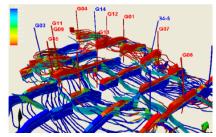
- 复杂构造带精细构造解释
- 沉积体系研究及储层特征研究
- · 油气成藏综合分析研究
- 储量计算及评价
- 油气藏精细地质建模

> 油藏工程研究

- 复杂油气藏开发技术政策研究
- · 油藏数值模拟及剩余油分布规律研究
- · 油气增产方案编制
- 复杂油气藏经济评价


■ 软硬件


> 软件


- · CYCLOG地层对比软件
- · Jason、Strata等地震反演软件
- Geoframe、Landmark地震解释综合研究软件
- Petrel地质建模软件
- · Eclipse、CMG油藏数值模拟软件

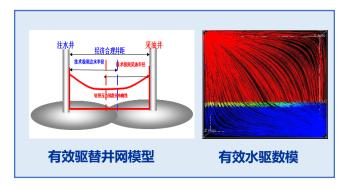
> 硬件

- HPxw9400、DELL7910系列工作站, 高性能微机等主要设备;
- · 打印机, 绘图仪, 扫描仪等配套设备。

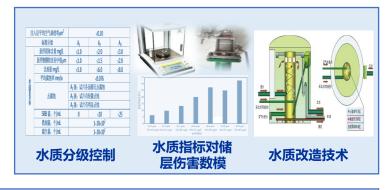
EXCONTENTS

01 油藏描述

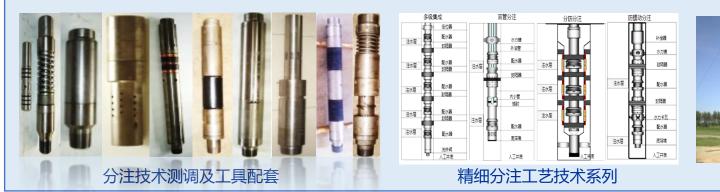
02 油气增产技术方案编制


03 油气增产技术及服务应用

让能源的获取更加高效 www.keruioil.com


■ 精细化注水技术

- 技术简介 针对地层亏空、注水效果差的油藏,配套井网水驱优化、精细分注、水质分级管理等多种技术,补充能量、提供注水有效波及体积与驱替效率。
- > 技术优势


」 井网水驱优化技术

- 优化有效驱替井网设计
- 补充能量;
- · 提高驱替效率。

□ 水质分级管理技术

- 水质分级控制;
- · 水质指标优化技术配套
- 确保"注够水、注好水"

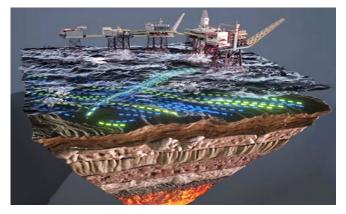
□ 精细分注工艺技术

对不同油藏类型配套精 细分注技术工艺系列与 测试调配技术,自主设 计与配套注水工具。

■ 流场矢量调整/高耗水带定量描述技术

对已形成注水优势通道的高含水老油田,对高耗水带进行识别基础上,流场调整,降低含水和提高开发效果。

平面高耗水带 层间高耗水层 层内高耗水段 层内韵律段 GD油田Ng5²⁺³ GD西区北馆35 T11南沙二8 油藏深部堵水调剖 水淹特征 检查井 饱和度差值26.4% 饱和度差值15.1% 差值12.3% 剩余油分布 非主流线等弱驱部位富集 潜力层剩余油饱和度高 层内中上部剩余油富集 层内高耗水段两端剩余油富集 技术系列 井网调整转流场 分层注水调剖面 精细调配促见效 精准调剖扩波及

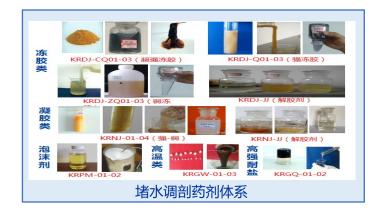

■ 聚合物驱油开发技术

▶ 技术简介:在注入水中加入高分子聚合物,既增加水相粘度又通过吸附滞留降低水相渗透率,从而降低水油流度比,增大波及系数、提高采收率。

> 技术优势:

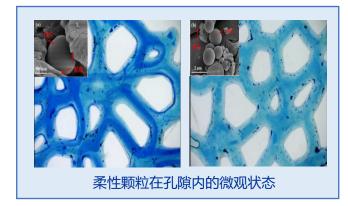
- 适用于不同类型油藏: 驱油机理简单稳定, 不涉及复杂化学反应, 油藏条件要求低, 具有广泛适用性。
- **化学稳定性强**: 现代聚合物配方具有较强的耐温、耐盐性,可在不同地质条件下保持驱油性能。

根据油藏物性和地层水矿化度分为三类适 用于聚合物驱的油藏,形成成熟的产品体 系,满足不同的需求。

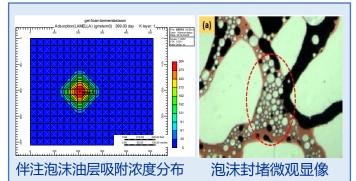

油藏 类型		渗透率 mD	地层温度 ℃	矿化度 10 ⁴ mg/L	钙镁离子 mg/L	地层原油粘度 mPa•s	
I类		> 500	< 70	< 1.0	< 200	< 150	
工类		> 500	70-80	1.0-3.0	< 400	< 150	
皿类	1	> 100	< 95	< 3.0	> 400	<150	
业 突	2	> 500	< 70	< 3.0	> 400	< 500	

■ 堵水调剖调驱系列技术

> 技术简介


- 针对油藏注水波及差、水驱效率低的问题,整体配套改善平面和层间调驱效果的技术系列;
- 根据不同油藏水驱工艺需求,综合配套了**堵水调剖、氮气泡沫、三相复合驱**等多种工艺;
- 提升水驱开发油藏能量补充与注水有效波及体积与驱替效率,大幅提升二次采油的采收率。

> 技术优势


口 堵水调剖系列技术

- 堵剂体系化,
- 解决耐温、耐盐等问题

□ 三相复合驱技术

- 氮气泡沫封堵
- 柔性颗粒架桥
- 水相增能
- 控水增油适用性广

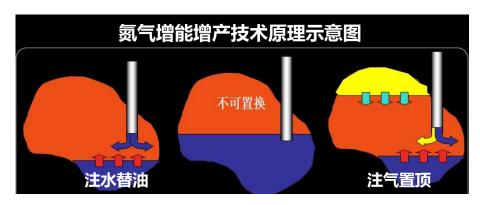
□ 氮气泡沫技术

- 氮气增压补能
- 泡沫封堵调剖
- 动态封堵高含水孔隙

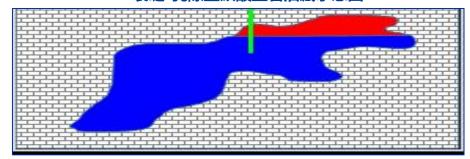
■ 低渗透油藏复合注水技术

技术简介采用常规增压水泵与化学剂结合,研究形成了复合注水采油技术。注入压力略高于储层破裂压力,在注水井周围形成微缝短缝,既提高了注水量、又有效控制了水窜现象的发生,单井日注水可达数百方。

> 技术优势


高压注水设备

增压注水设备

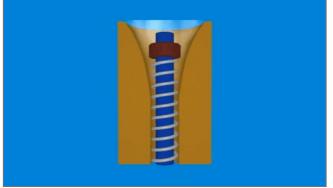

碳酸盐岩气体增产技术

- 技术简介・
 - 由制氮设备从空气中分离高纯度氮气,压缩后注入地层,快速补 充地层能量,置换储层剩余油,实现油井增产。有单井吞吐和氮 气驱两种应用模式。
- > **氮气优势** 气源广、可就地取材
 - 化学性质稳定、对地层无伤害
 - 无味无毒、不燃烧不爆炸,注入安全
- - **应用场景 缝-洞型碳酸盐岩**:中国西北部油田已规模化应用,成为油田增 产、提高采收率主导技术。
 - **裂缝-孔隙型碳酸盐岩:**主要在中国东部油田,实现了选井-施工 一体化服务,实现停产井、废弃井的再开发。

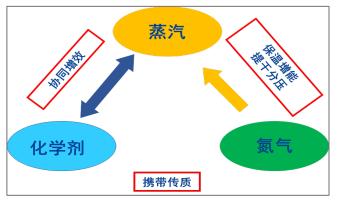
裂缝-孔隙型碳酸盐岩油藏示意图

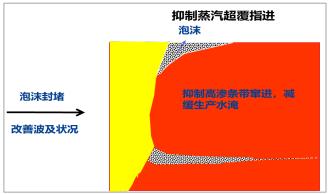
缝-洞型碳酸盐岩油藏示意图

■ 稠油一体化开发技术


- > 技术简介
- 针对**高黏度稠油油藏**进行系统化开发的系列技术;
- 全程保干技术结合氮气泡沫、蒸汽吞吐、热采驱油等多种工艺;
- 提升油藏驱替效率、降低油黏度,提高稠油油藏采收率。

> 技术优势


2 全过程热管理技术


制汽、输汽、注汽全程设备+工艺保干:保障井底干度大于63%。

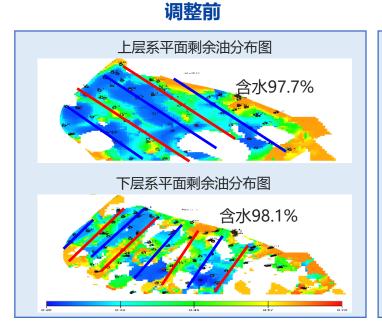
口 均匀注汽采油技术

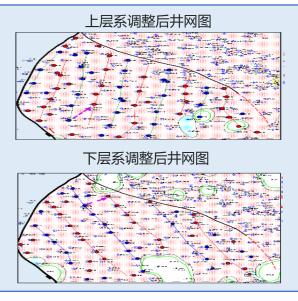
均衡采油配产器:解决吸汽不均匀、储量动用差异大的问题。

氮气+化学药剂辅助热 采技术

氮气置顶保温、携带传质、 增压补能;化学药剂同时 起泡暂堵抑制气窜。

国 高含水井治理技术


氮气泡沫调剖:利用泡沫 封堵,改善蒸汽波及状况。


■ 经典案例一: G区层系井网互换流场调整精细注水技术

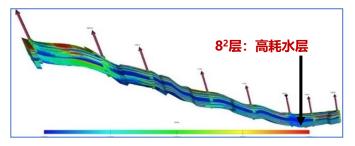
> 技术调整:

- 上下层系井网互换 转变注采流线40°
- 高耗水区域油井侧钻避水
- 水井厚油层深部堵调
- 管柱多级封堵, 老井换层系工作量89井次

调整后

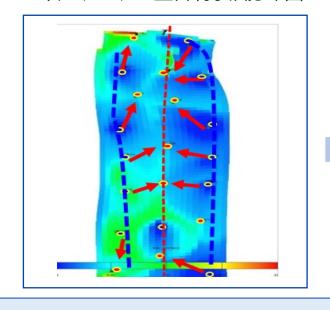
> 实施效果:

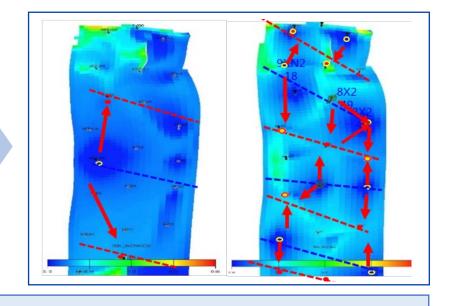
- 日产油增加44%
- 吨油运行成本降低25%
- 吨油耗水率下降35%
- 提高采收率2.1%


效果与效益

■ 经典案例二: T块层系细分流场调整精细注水技术

调整前:


纵向剩余含油饱和度分布剖面图

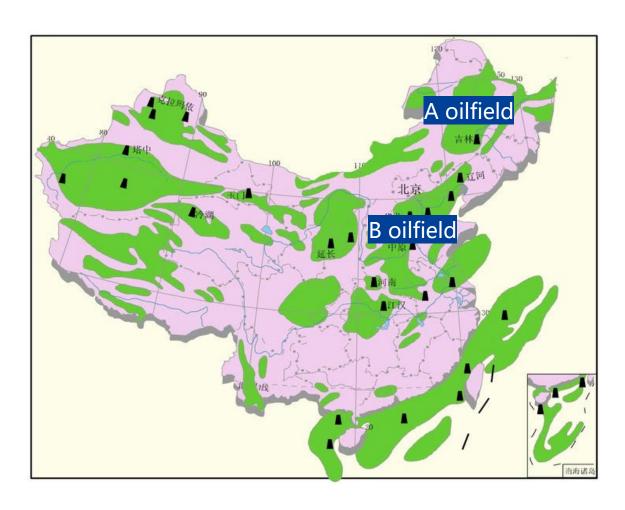

调整前:

T块8¹、8²、8³叠合剩余油分布图

调整后:

T块8¹⁺³、8²分层系开发剩余油分布图

采取技术调整方案


SNO

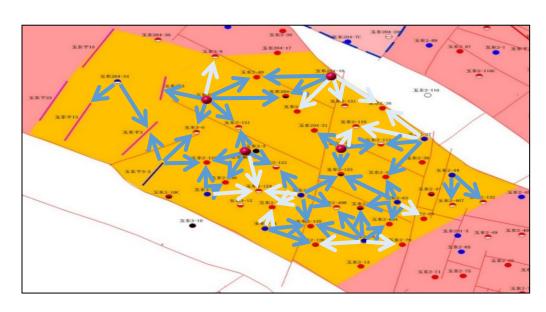
- 纵向细分二套开发层系
- 平面转换井网形式
- · 韵律层细分注水
- ・ 完成注水调整

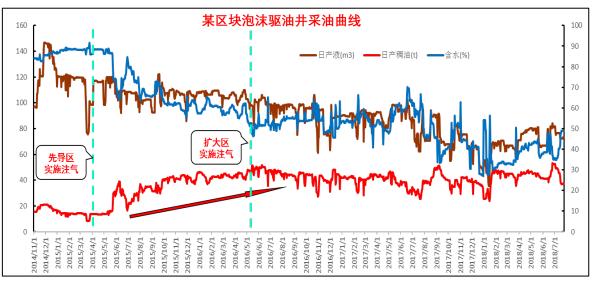
■ 经典案例三: 化学驱油开发技术案例

世界范围内已实施聚合物驱项目730余个,主要分布在美国,德国,印度和中国,以陆上砂岩为主。

> A油田

- 温度: <50℃; 矿化度: <5000mg/L;
- 储层物性好,油粘度低。适用于聚合物驱。
- · 2023年油气当量3500万吨,其中化学驱油产量1000万吨以上。


▶ B油田


- 温度: 50℃-90℃; 矿化度: <30000mg/L;
- 储层物性差,油粘度高。聚合物驱有挑战性。
- 2023年油气当量2400万吨,其中化学驱油产量300万吨以上。

■ 经典案例四: 堵水调剖调驱技术案例——中国西部某深层稠油油藏

埋深> 2000m, 储层厚度>40m, 地下原油粘度286mPa·s, 水驱波及体积小, 采出程度<5%。

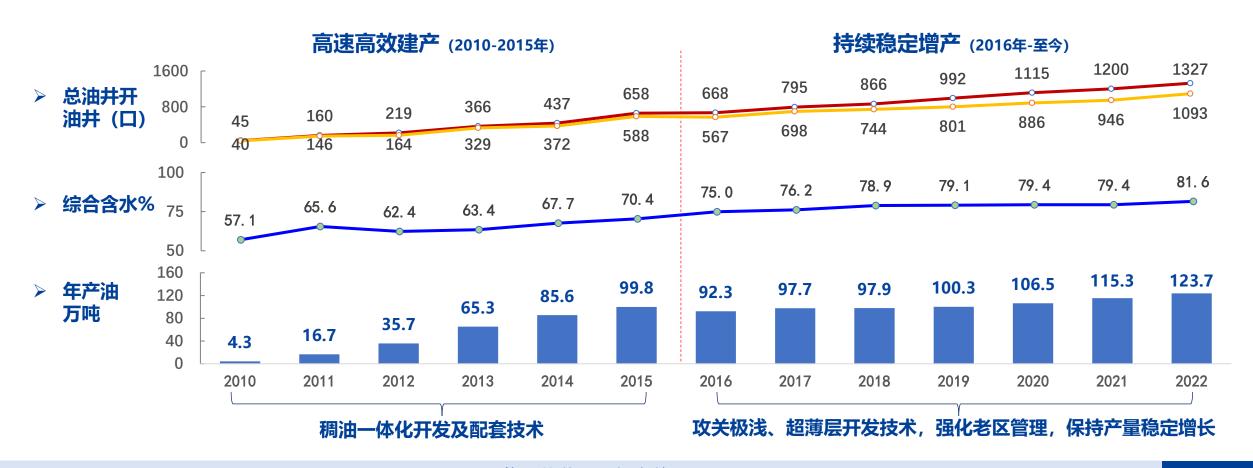
- ▶ 2014年9月开展先导试验,2017年6月实施工业化试验。
- 某区块见效明显的20口井, 含水从84.1%降到34.4%, 日产油从47.6吨上升到191吨。
- ▶ 共实施氮气泡沫驱38个井组,油井125口,已实现增油15万吨。

■ 经典案例五: 低渗透油藏复合注水技术案例——中国西部某井区复合注水项目

2022年,对目标区块5口水平井进行了氮气+活性水(渗吸减阻剂)吞吐增产作业,累增油2490.8吨,3口井效果明显(**平均单井增油830.3吨**),与邻井注水压力相比本次施工注液压力整体低2-6MPa,实现渗吸减阻目的。

某区块复合注水措施效果统计表

序号	井号	作业前产状			作业后目前产状			生产天数	累产油量(t)	田梅沖号 (4)
		日产液 (m³)	日产油 (t)	含水 (%)	日产液 (m³)	日产油 (t)	含水 (%)	(天)	茶厂加里(い	系垣加里(l)
1	001	3.33	1.61	51.6	1.55	0.77	50.2	367	415.7	微效
2	002	0.8	0.64	19.5	6.64	3.86	41.9	370	1045.4	808.6
3	003	3.01	1.69	43.7	3.76	2.52	33	350	1539.5	948.7
4	004	2.16	1.74	19.5	1.33	0.91	31.7	350	508.3	微效
5	005	0.9	0.72	20.0	4.46	3.22	27.8	320	963.9	733.5
	合计		6.4			11.28			4472.8	2490.8


- 经典案例六:碳酸盐岩气体增产技术案例——中国西部某缝-洞型碳酸盐岩油藏注气增产项目
- ▶ 试验阶段: 2012年开展注氮气增产先导试验,试验井注氮气吞吐8个轮次,增油1.95万吨。
- ▶ 扩大应用阶段: 截止2023年底,累计实施注气井992口,工作量3028井次,控制地质储量达5.0 亿吨,累注氮气36.6亿方,累增油量743万吨。2023年注氮气8亿方,年增油107万吨。

■ 经典案例七: 稠油一体化开发技术案例——中国东部某浅薄稠油油田一体化开发项目

油藏埋藏浅(150~750m),储层薄(2~6m),温度和压力低(18~35℃, 2.0-6.1MPa),原油稠(地下5~9×10⁴ mPa.s)**。通过稠油** 一体化开发,建成持续稳产年产百万吨油田。

2022年开油井1093口,产油123.7万吨,综合含水81.6%。

成就客户共创共享

山东科瑞石油技术有限公司

让能源的获取更加高效 www.keruioil.com